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Asymptotic estimates for finite-time ruin probability
of a bidimensional risk model based on entrance
process

Zhankui Wang

Abstract— Consider a bidimensional risk model based on
entrance process with constant force of interest in which the
claim size from the same business are heavy-tailed and pairwise
strong quasi-asymptotically independent, the two counting
processes of different business satisfy a certain dependence
structure. A precise asymptotic formula for the finite-time ruin

probability is obtained.
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. INTRODUCTION

We know that the literature [1] put forward into a new
model (LIG model) based on an entrance process and
discussed asymptotic normality of the risk process.
Furthermore, some scholars got some conclusions
through the study of the LI1G model. [2-4] investigated
the one-dimensional risk model based on entrance
processes. Recently, more attention has been paid to
multi-dimensional risk models, especially
bidimensional ones. [5] discussed the precise large
deviations based on the entry process risk model in the
independent case of multi-risk. [6] studied the ruin
probability of a bidimensional risk model based on
entrance processes with constant interest rate.

In this paper, we investigate finite-time ruin probability
of a bidimensional risk model based on entrance processes,
in which an insurance company operates two kinds of
business. Suppose that the initial insurance fund for the

I —th class is X, and S; is entry time of the j—th
policy with 0<S; <S)<--- and S} =Z::16’,i :
i=1,2. {(N,(t), N, (1)),
t > O} is a bidimensional renewal counting process. Here,

N. (t) =sup{] ZO:S} <t},t>0,i=12. For more

detail of a bidimensional renewal counting process, we
refer the reader to Examples 3.1 and 3.2 of [7]. Denote the

mean function by A, (t) = EN, (t) with A (0)=0 and
A (t) <o : and
A ={t>0:4(t)>0}={t>0:P(S; <t)}. Ifwe

define the set
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sett' =inf{t > 0:P(S; <t) >0}, then it is easy to see
that A, =[t',00] if P(S{ =t')>0; or A, =(t',0]
if P(S, =t') =0,i =1,2. We denote the intersection set
by A=A;NA,. Let the validity time of the j—th
{Cl,j=12--} with
P(C} =a))=p,,(=12---,K', where they are
independent and identically distributed. The premium is
f.(C;) and f;(") isastrictly increasing function. D is

policy  be probability

claim time of the j—th policy and independent and
identically distributed function H, (-). X} is the j—th
claim size and identically distributed function F(-) .
Suppose that X} have the same distributions X . For any

time t >0, the surplus process of the insurer can be

described as
Ny () 5 (t—St
(Rl(t) (xle] 2in RCHE
= +
ot N, (t) 5(t-57)
R(D)) (xe IR ACHLE

N, (1) _gl_pt
Z 1 xilea(t st-0h)|

i=1 {s}+D}<t,D}<Cl}
Ny (t) , 2. 5(t-52-D?) - (@

] ]
E o, Xie I

j=

2 2 2 2
{s?+D?<t,D}<C?}

where 0 > 0 denotes the constant force of interest. We

further assume that {XJ%, =0 {X? j=1} and

{(N,(t),N,(t))",t > O} are mutually independent.

Define the finite-time ruin probabilities corresponding

to risk model (1) as

W (X, Xo51) = P71 (%, %,) <t)
=P((R(s)<0,0<s<t),

where
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z-malx (Xl’ XZ)
=inf{t: max{R,(t), R, ()} <0| R (0) =%,
=12}

In the rest of this paper, Section 2 presents our main results
after introducing necessary preliminaries, Section 3 gives
some lemmas, and Sections 4 gives the proofs of the main
results.

Il. PRELIMINARIES AND MAIN RESULTS

Definition 1. For a distribution F |, denote its tail
distribution by F=1—F and its upper Matuszewska

index by 3
3¢ = —lim!9E0.
X—>0 |Og X
where B
E (x) = liminf 299 5 y s 0.
X—0 F(X)

which can be found in [8].A distribution F is said to be
dominatedly-varying-tailed, denoted by F € D , if for

every fixed y € (0,1), F.(x)<o.Clearly, F €D . A
distribution F is said to be long-tailed, denotedby F € L,
if for every fixed y € R, F(x+Yy) [ F(X) as X — oo,
that is,

F(x+y) _

lim—= =1,
F(x)

X—0

which can be found in [9].
Definition 2. If real valued random variables X;,i>1

with distribution functions F,,i>1 satisfy for any i # |

lim

min{x; ,xj}—m

P(X;>x|X;>x%;)=0,

=1 are

quasi-asymptotically independent (PSQAI) , which can

be found in [10].
Theorem 1. Consider the bidimensional risk model (1).

Suppose that claim sizes, {X;, j =1 be PSQAI
random  variables  with ~ common  distribution
FeDNL , i=L2 . 1f Ny(t) and N,(t) are
arbitrarily dependent, then for any fixed & >0 with
E[N,(e)N,(£)] >0. Thenfor t e A([&,T], we have

w (%, %,;1)
AN SR
dH; (V) EIN, (u)N, (u,)]. @)

Then we say X pairwise  strong

I1l. SOME LEMMAS

The following lemma is an immediate corollary of Theorems
3.2 and 3.4 of [11].

Lemma 1. Let {N,(t),t>0}and {N,(t),t >0} betwo
their
, respectively. For any

renewal counting processes with inter-arrival

time 911,6?;,--', and 912,922,~--
integer 1>1 , denote by S'= Z i J and

2 O 2
Si - Zj 191
{(8",67);i>1} is a sequence of i.i.d. random vectors,
then it holds for any U, >0 and U, >0 that

the corresponding arrival times. If

Z.O:ZOO: P(Sil S Uy, sz = uz) = E(Nl(ul)NZ(uz))'

i=1 j=1
The following lemma comes from Theorem 2.1 of [10]

Lemma 2. Assume that {X;,1<j<n} are n
real-valued random variables with functions of distribution
Fol<j<n.if {X;1<j<n} are PSQAI and

F,eDMNL and (c,--,c,) €[a,b]". Then

P(chxj > X) [ Zp(cjxj >X).
j=1 j=1

The following lemma comes from proposition 2.2.1 of [9]

Lemma 3. If a distribution F € D , then forany > J.,

there exist two positive constant C and D such that for all
Xx>y>D,

F) i
F =G

Lemma 4. Under the conditions of Theorem 1, it holds that
uniformly for t e AN[&,T],
Ny (1)
-5(SH+D})
P(Zl X e I{sl+D}st,D}sci1} > X

N, (t)

z X .2675(3’2+D"2)|

j {s?+D?<t,DZ<C?} > XZ)

0 J- J~OI 1(2‘” 3 J‘a//\(t u;) IE(X e&(ui+y))
dH; (y))dE[N, (u)N, (u,)] . 3)

Proof. For arbitrarily fixed positive integer M, we split
the left-hand side of (3) into three parts as

'DIDIDIDIDRD WP

m=ln=l m=ln=M+1 m=M+1ln=l m=M+1n=M+1
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XP(Z X 1 —(>(31+Dl

>
{Sl+Dilst,Di1sCi1} X

2 —()‘(SJ-+D]-)
Z S |62, 020002502 > X2

N, =m, N,(t)=n)

3

= 210061 = L 0 X 1) @
k=1

We first deal with 1,(X,X,:t) Write
={0<z <---<z; <t<z ,}, and B, ={0<

<o < Zrln <t< Z,lm}. Since the three sequences

£X, 28, i=12,and {(N,(t),N,(t)",t = 0)}

are mutually independent, and using Lemma 2, we have that
uniformly for t € A([¢&,T]

1, (%, Xz;t)
— Z_;nz_; P(Z_ll Xl ~5(sD0) | {31+D1<t . - %,
JZI:,XJZE 5(s2+D? )|{52+D2<t pec} > Xy
N, =m, N, () =n)
M M
_;;J‘ J.Bl B2

P(i Xl —($(31+D1

2 —(5(5j+Dj)
Z Xje |62 020022y > Xe)

xP(S; edz;,---,S} | edz}
S?edz},---,S%, edz’,)

>
{s%o}st,o}sc}} X,

m+1?

M m

: ZZZZI J.Bl B2

m=1 n=1 i=l j=1
~5(S{+D})
P(X7e | st oicoiecy > %)
2,,-8(85+D%)
P(Xje I{SZ+D2<t D?<C?} > XZ)
xP(S; edz,--+, S}, edz;
2 2 2
Sfedz’,---,S2, edz’,)

- ZZZZ P(X e_a(Sl+D1) I{Sl+D1<t Di<Cl} > X

m=1 n=1 i=1 j=1

m+1?

2 —5(S%+D?) _
X 2710 I{s]?+Djzgt,Dfscj2}>X2’Nl(t)_m’

N, (t) =n)

o0 00 0 o0

1o IEOIDIED I )

m=1 n=1 m=ln=M+1 m=M+1n=1
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m n
-5(st+D})
2.2 P(Xfe | s it opecy > X

i=1 j=1
2 —5(53+D?
X 2P|

N, (t) =n)

> XZ’ Nl(t) =m,

2 2 2 2
{s2+D?xt,D2<C?}

:Jl(Xsz;t)_‘]z(Xsz;t) ®)
For J,(X,, X,;t), uniformly forall t e A[&,T]
3 (%, %3 1)

-5(st+D})
- ZZ P(X € |{51+D1<t D<Ci} > X

j=1 i=1
2,.-6(s§+D%) 1.
XZe I{sfmfstpfgc]?} > X,, S <t,
2
7 <t)
aLA( —Uj) —

|: (X eﬁ(uiw))

S

dH, (y))P(S! e du,, S? e du,)

= [T Y e )
dH, (y))dE[N, (u,)N, (u,)] . (6)

As for J, (X, X,;t), we have that for all t e AN[&,T],

RN I IED IO

m=ln=M+1 m=M+1 n=1

m

Zip(x3>x1,xf>x2,

i
N, (t)=m, N,(t)=n)
=K, (X, X5 1) + K, (%, %,5t) .
It holds that for all t € AN[e,T],

Ky (X %3 1)

SZOO: i Zm:ZH:P(Xil > X, X > %N (t) =m,

m=ln=M+1 i=1l j=1

N, (©) =)
:P(Xi1>x1,Xj2 >x2)i i mnP (N, (t) =m,
NO=m).

= IE(X1) IE(Xz)E(Nl(t)Nz (t) I N, (T)>M ) :
We obtain from HOlder's inequality that

E(N,(ON, Oy, 1)om)
E(N, ()N, (D)

teA[e,T], Moo
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- (ELCN, (M)I)? (EIN, (M) L, ooy _
- E(N,(£)N,(¢))

Then, by F. € D,i=1,2, we have

lim lim sup
M —o0 min{x, X, }—>0 teAN(0,T]

K%, %)

DEACER L R
1
“OH, (Y)DEIN, ()N, (u,)]
= it e lfl(xlje(;%; II;z(():;z)eﬂ)
1

X :
2 K

Il:IlZ piH, () A (t—U,))

E(N,(ON, (O ryom)

WA T ENoNey @

M=o A (0,T]

K, (X, X,;1) can be dealt with in the same way. Thus, we
obtain

lim  lim sup
M —c0 min{x, X, }—>0 teAN(0,T]

35 (X, %5 1)
LA e R ke )
1
X =0 (8)
dH; (y))E(N, ()N, (1))

Substituting (6) and (8) into (5) leads to
1, (%, %: 1)

. j.(:.[ H(Z/ =1 IJ. e U)F(Xeb(LHy))

dH; (Y))ELN, (u)N, (u;)]. ©)

I, (%, X,;t) .
B>max{Jg, ¢ }. According to Lemma 3, uniformly
forall te AN[e,T],

We next estimate Choose some

1, (%, %;;t)

0

Z z mnP(X* > x, /m)P(X?* > x,/n)

«P(N,(t)=m, N,(t)=n)

<CC,P(X* > x)P(X?>x%,)>. > m/n/™
m=1n=M+1

xP(N () =m. N,(t) =n)

<CP(X'>x)P(X?>x,)
xE(N, (t)[“1 N, (t)ﬂJrl I N, (T)>M ).

where C is some positive constant. Similarly to (8) we
obtain

lim lim sup
M —o0 min{x, X, }—>0 teAN(0,T]

1, (%, %,:t)

J’(;J- H(Z/ 3 :/J. ajA(t U)F(Xeﬁ(uw))
1

X =
dH; (y))dEN, (u;)N, (u,)]
In the same manner, we can prove

lim lim sup
M o0 min{x;, %, 3% 1A (\(0,T]

150, %,:1)
LI e[ R ke )
1

" aH, (v)) dEIN, (U) N, (U,)]

<lim lim sup
M >0 mln{X1 XZ}_)OO teAN(0,T]

(10)

L, (X, %31)
J';J- H(Zf 3 VJ-a/A(t U)F(X e +y))

1
X
dH; (Y)dE[N, (u))N, (u,)] -
Substituting (9), (10) and (11) into (4) the desired
relation (3) holds uniformly forall t e A([&,T].

(11)

IV. PROOF OF MAIN RESULTS.
Proof of Theorem 1. We first deal with the asymptotic upper
bound of (X, X, ;1) . By Lemma 4, we have that uniformly
for te AN[e, T],

N, (t)
V/(X1 Xz’t) < P(Z Xl il )I{51+D1<t Di<Ci} > X

i=1
N, (t)

2 J(S wa )
Z; Xle I{SZ+D2<t D?<C?} > X )
J_

0T, e[ R ke
dH,(MEN(WN, ). 1)

Then we discuss the asymptotic lower bound of
W (X, X,;t) . For simplicity, write
N, (t)

Z (t)= Z f (C )e“’S
N>0

k=12.

For sufficiently large by Lemma 4,
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F,eL k=12 , we obtain that uniformly for 2013,83(9)-2081-2087.

teA ﬂ[g,T] ) [11] J. Hunter, Renewal theory in two dimensions: Basic results[J].
Advances in Appl. Probability. 1974, 6(2): 376-391.
(X, %;t)
N (t) Zhankui Wang, School of Mathematics and Statistics, Northwest Normal
0 J‘°° J‘°° P(Z X LS+ University, Lanzhou, China, Mobile 86- 18894575336.
0do t& T {s+Di'<t,D}<C}
>X+

N, (t)
SZ
} X2 el

P(Z (t) e dz,, Z,(t) e dz,)

LA e R e

dH, (Y)AEIN, ()N, (u,)]

<P(Z,(t) e dz,, Z, (t) € dz,)
RO T R ke

dH, (Y)AEIN, ()N, (u,)]

<P(Z,(t) e dz,, Z, (t) e dz,)
1PEZ,M)<N,Z, (t)sN)

L RTCE B R (ke )M, ()

GEIN, (U)N, (U, )]

L R )

dH; (Y))dE[N, (u,)N, (u,)] . (13)
A combination of (12) and (13) shows that (2) holds
uniformly forall t <T

{s}+D?<t,D}<C?} > Xyt 22)
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